CS 237: Probability in Computing

Wayne Snyder
Computer Science Department
Boston University

Lecture 3: Problem Solving Methods with Decision Trees

- Review and finishing up from last time:
- Finite Probability, Equiprobable Case, Non-Equiprobable Case
- Decision Trees for Probability Spaces
- The Monte Hall Problem

Review: Finite Probability Spaces

For finite probability spaces, it is easy to calculate the probability of an event; we just have to apply axiom P_{3} :

If event $\mathbf{A}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, then

$$
P(A)=P\left(\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}\right)=P\left(a_{1}\right)+P\left(a_{2}\right)+\ldots+P\left(a_{n}\right)
$$

Example: Toss a die and output the number of dots showing. Let $\mathrm{A}=$ "there are an even number of dots showing" and $\mathrm{B}=$ "there are at least 5 dots showing."

We can illustrate simple problems by using the "area" = "probability" analogy:

Equiprobable: area of each elementary event is $1 / 6=0.16666 \ldots$

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A}) & =\mathrm{P}(2)+\mathrm{P}(4)+\mathrm{P}(6) \\
& =1 / 6+1 / 6+1 / 6 \\
& =1 / 2 \\
\mathrm{P}(\mathrm{~B}) & =\mathrm{P}(5)+\mathrm{P}(6) \\
& =1 / 6+1 / 6 \\
& =1 / 3
\end{aligned}
$$

Review: Finite Probability Spaces

Example: Flip three fair coins and count the number of heads. Let $\mathrm{A}=$ " 2 heads are showing" and $\mathrm{B}=$ "at most 2 heads are showing."

The equiprobable "pre-sample space" is
configuration: $\{$ TTT, TTH, THT, THH, HTT, HTH, HHT, HHH \}
$\begin{array}{llllllllll}\text { \# heads: } & 0 & 1 & 1 & 2 & 1 & 2 & 2 & 3\end{array}$
$\mathrm{S}=\{0,1,2,3\}$
$P=\{1 / 8,3 / 8,3 / 8,1 / 8\}$

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A}) & =\mathrm{P}(2) \\
& =3 / 8 \\
\mathrm{P}(\mathrm{~B}) & =\mathrm{P}(0)+\mathrm{P}(1)+\mathrm{P}(2) \\
& =1 / 8+3 / 8+3 / 8 \\
& =7 / 8
\end{aligned}
$$

Not Equiprobable: area of each elementary event is different:

Finite Equiprobable Probability Spaces

For finite and equiprobable probability spaces, it is easy to calculate the probability:

$$
\begin{aligned}
|\mathrm{A}| & =\text { cardinality of set } \mathrm{A} \\
& =\text { number of members }
\end{aligned}
$$

$$
P(A)=\frac{|A|}{|S|}
$$

Here, "area" = "number of elements."

Example: Flip a coin, report how many heads are showing? Let $\mathrm{A}=$ "the coin lands with tails showing"

$$
\begin{aligned}
& S=\{0,1\} \\
& P=\{1 / 2,1 / 2\}
\end{aligned}
$$

Finite Equiprobable Probability Spaces

For finite and equiprobable probability spaces,
it is easy to calculate the probability:

$$
P(A)=\frac{|A|}{|S|}
$$

Here, "area" = "number of elements."

Example: Roll a die, how many dots showing on the top face? Let $\mathrm{A}=$ "less than 4 dots are showing."

$$
\begin{aligned}
& S=\{1,2, \ldots ., 6\} \\
& P=\{1 / 6,1 / 6, \ldots ., 1 / 6\}
\end{aligned}
$$

Decision Trees for Probability Problems

Decision Trees for Probability Problems

Decision Trees for Probability Problems

Decision Trees for Probability Problems

Decision Trees for Probability Problems

Decision Trees for Probability Problems

The Monte Hall Problem

Let's Make a Deal

In the September 9, 1990 issue of Parade magazine, columnist Marilyn vos Savant responded to this letter:

Suppose you're on a game show, and you're given the choice of three doors. Behind one door is a car, behind the others, goats. You pick a door, say number 1, and the host, who knows what's behind the doors, opens another door, say number 3, which has a goat. He says to you, "Do you want to pick door number 2?" Is it to your advantage to switch your choice of doors?

Craig. F. Whitaker
Columbia, MD

The Monte Hall Problem

A

C

The Monte Hall Problem

A

B

C

The Monte Hall Problem

In the September 9, 1990 issue of Parade magazine, columnist Marilyn vos Savant

 responded to this letter:Suppose you're on a game show, and you're given the choice of three doors. Behind one door is a car, behind the others, goats. You pick a door, say number 1, and the host, who knows what's behind the doors, opens another door, say number 3 , which has a goat. He says to you, "Do you want to pick door number 2?" Is it to your advantage to switch your choice of doors?

Implicit Assumptions (@DamnWordProblems)

1. The car is equally likely to be hidden behind each of the three doors.
2. The player is equally likely to pick each of the three doors, regardless of the car's location.
3. After the player picks a door, the host must open a different door with a goat behind it and offer the player the choice of staying with the original door or switching.
4. If the host has a choice of which door to open, then he is equally likely to select each of them.

The Monte Hall Problem: The Four-Step Method

Step 1: Find the Sample Space

The Monte Hall Problem: The Four-Step Method

Step 2: Define Events of Interest

The Monte Hall Problem: The Four-Step Method

Step 2: Define Events of Interest

The Monte Hall Problem: The Four-Step Method

Step 3: Determine Outcome Probabilities

The Monte Hall Problem: The Four-Step Method

Step 4: Compute Event Probabilities

Decision Trees for Probability Problems

Decision Trees for Probability Problems

Decision Trees for Probability Problems

